Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Trends Microbiol ; 29(7): 593-605, 2021 07.
Article in English | MEDLINE | ID: covidwho-1157752

ABSTRACT

Ecological and evolutionary processes govern the fitness, propagation, and interactions of organisms through space and time, and viruses are no exception. While coronavirus disease 2019 (COVID-19) research has primarily emphasized virological, clinical, and epidemiological perspectives, crucial aspects of the pandemic are fundamentally ecological or evolutionary. Here, we highlight five conceptual domains of ecology and evolution - invasion, consumer-resource interactions, spatial ecology, diversity, and adaptation - that illuminate (sometimes unexpectedly) the emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We describe the applications of these concepts across levels of biological organization and spatial scales, including within individual hosts, host populations, and multispecies communities. Together, these perspectives illustrate the integrative power of ecological and evolutionary ideas and highlight the benefits of interdisciplinary thinking for understanding emerging viruses.


Subject(s)
COVID-19/virology , Disease Reservoirs/veterinary , Ecology , Evolution, Molecular , SARS-CoV-2/genetics , Animals , COVID-19/epidemiology , Chiroptera/virology , Disease Reservoirs/virology , Humans , Zoonoses/virology
2.
Elife ; 92020 09 07.
Article in English | MEDLINE | ID: covidwho-745648

ABSTRACT

Understanding and mitigating SARS-CoV-2 transmission hinges on antibody and viral RNA data that inform exposure and shedding, but extensive variation in assays, study group demographics and laboratory protocols across published studies confounds inference of true biological patterns. Our meta-analysis leverages 3214 datapoints from 516 individuals in 21 studies to reveal that seroconversion of both IgG and IgM occurs around 12 days post-symptom onset (range 1-40), with extensive individual variation that is not significantly associated with disease severity. IgG and IgM detection probabilities increase from roughly 10% at symptom onset to 98-100% by day 22, after which IgM wanes while IgG remains reliably detectable. RNA detection probability decreases from roughly 90% to zero by day 30, and is highest in feces and lower respiratory tract samples. Our findings provide a coherent evidence base for interpreting clinical diagnostics, and for the mathematical models and serological surveys that underpin public health policies.


Subject(s)
Betacoronavirus/genetics , Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Immunoglobulin G/blood , Immunoglobulin M/blood , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , RNA, Viral/analysis , Antibodies, Viral/blood , Antibodies, Viral/isolation & purification , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G/isolation & purification , Immunoglobulin M/isolation & purification , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , RNA, Viral/isolation & purification , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL